skip to main content


Search for: All records

Creators/Authors contains: "Shih, Chih-Kang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Moiré superlattices host a rich variety of correlated electronic phases. However, the moiré potential is fixed by interlayer coupling, and it is dependent on the nature of carriers and valleys. In contrast, it has been predicted that twisted hexagonal boron nitride (hBN) layers can impose a periodic electrostatic potential capable of engineering the properties of adjacent functional layers. Here, we show that this potential is described by a theory of electric polarization originating from the interfacial charge redistribution, validated by its dependence on supercell sizes and distance from the twisted interfaces. This enables controllability of the potential depth and profile by controlling the twist angles between the two interfaces. Employing this approach, we further demonstrate how the electrostatic potential from a twisted hBN substrate impedes exciton diffusion in semiconductor monolayers, suggesting opportunities for engineering the properties of adjacent functional layers using the surface potential of a twisted hBN substrate. 
    more » « less
    Free, publicly-accessible full text available August 10, 2024
  2. In intrinsic magnetic topological insulators, Dirac surface-state gaps are prerequisites for quantum anomalous Hall and axion insulating states. Unambiguous experimental identification of these gaps has proved to be a challenge, however. Here, we use molecular beam epitaxy to grow intrinsic MnBi 2 Te 4 thin films. Using scanning tunneling microscopy/spectroscopy, we directly visualize the Dirac mass gap and its disappearance below and above the magnetic order temperature. We further reveal the interplay of Dirac mass gaps and local magnetic defects. We find that, in high defect regions, the Dirac mass gap collapses. Ab initio and coupled Dirac cone model calculations provide insight into the microscopic origin of the correlation between defect density and spatial gap variations. This work provides unambiguous identification of the Dirac mass gap in MnBi 2 Te 4 and, by revealing the microscopic origin of its gap variation, establishes a material design principle for realizing exotic states in intrinsic magnetic topological insulators. 
    more » « less
  3. Monolayer group V transition metal dichalcogenides in their 1T phase have recently emerged as a platform to investigate rich phases of matter, such as spin liquid and ferromagnetism, resulting from strong electron correlations. Newly emerging 1T-NbSe 2 has inspired theoretical investigations predicting collective phenomena such as charge transfer gap and ferromagnetism in two dimensions; however, the experimental evidence is still lacking. Here, by controlling the molecular beam epitaxy growth parameters, we demonstrate the successful growth of high-quality single-phase 1T-NbSe 2 . By combining scanning tunneling microscopy/spectroscopy and ab initio calculations, we show that this system is a charge transfer insulator with the upper Hubbard band located above the valence band maximum. To demonstrate the electron correlation resulted magnetic property, we create a vertical 1T/2H NbSe 2 heterostructure, and we find unambiguous evidence of exchange interactions between the localized magnetic moments in 1T phase and the metallic/superconducting phase exemplified by Kondo resonances and Yu-Shiba-Rusinov–like bound states. 
    more » « less